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c© Società Italiana di Fisica
Springer-Verlag 2000

Constraints on the CKM angle γ
and strong phases from B → πK decays

A.J. Buras1,a, R. Fleischer2,b

1 Technische Universität München, Physik Department, 85748 Garching, Germany
2 Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany

Received: 31 March 2000 / Published online: 18 May 2000 – c© Springer-Verlag 2000

Abstract. As we pointed out recently, the neutral decays Bd → π∓K± and Bd → π0K may provide non-
trivial bounds on the CKM angle γ. In this paper, we reconsider this approach in the light of recent CLEO
data, which look very interesting. In particular, the results for the corresponding CP-averaged branching
ratios are in favour of strong constraints on γ, where the second quadrant is preferred. Such a situation
would be in conflict with the standard analysis of the unitarity triangle. Moreover, constraints on a CP-
conserving strong phase δn are in favour of a negative value of cos δn, which would be in conflict with the
factorization expectation. In addition, there seems to be an interesting discrepancy with the bounds that
are implied by the charged B → πK system: whereas these decays favour a range for γ that is similar to
that of the neutral modes, they point towards a positive value of cos δc, which would be in conflict with
the expectation of equal signs for cos δn and cos δc. If future data should confirm this “puzzle”, it may be
an indication for new-physics contributions to the electroweak penguin sector, or a manifestation of large
non-factorizable SU(3)-breaking effects.

1 Introduction

In order to probe the angle γ of the unitarity triangle of
the Cabibbo–Kobayashi–Maskawa (CKM) matrix at the
B-factories, B → πK decays play an outstanding role. Re-
markably, already CP-averaged branching ratios of such
channels may imply very non-trivial constraints on γ. So
far, the studies of these bounds have focussed on the fol-
lowing two systems: Bd → π∓K±, B± → π±K [1], and
B± → π0K±, B± → π±K [2]; they have received a lot
of attention in the literature. In a recent paper [3], we
pointed out that also the neutral decays Bd → π∓K±
and Bd → π0K may be interesting in this respect, and
presented a general formalism, allowing us to describe all
three B → πK systems within the same theoretical frame-
work. Since the CLEO collaboration has reported the ob-
servation of the Bd → π0K channel in the summer of 1999,
which finalizes the search for all four B → πK modes, we
have reanalysed our approach in view of these new data.
It turns out that the new CLEO results [4] favour interest-
ing bounds on γ from the neutral B → πK decays. Here
the key quantities are the following ratios of CP-averaged
branching ratios [3]:

R ≡ BR(B0
d → π−K+) + BR(B0

d → π+K−)
BR(B+ → π+K0) + BR(B− → π−K0)

= 0.95± 0.28 (1)
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Rc ≡ 2
[
BR(B+ → π0K+) + BR(B− → π0K−)
BR(B+ → π+K0) + BR(B− → π−K0)

]
= 1.27± 0.47 (2)

Rn ≡ 1
2

[
BR(B0

d → π−K+) + BR(B0
d → π+K−)

BR(B0
d → π0K0) + BR(B0

d → π0K0)

]

= 0.59± 0.27, (3)

where the factors of 2 and 1/2 have been introduced to
absorb the

√
2 factors originating from the wavefunctions

of the neutral pions; the errors of the experimental results
given in [4] have been added in quadrature. If these ratios
are found to be smaller than one, they can be converted
directly into constraints on γ without any additional in-
formation. When the Bd → π∓K±, B± → π±K channels
were observed in 1997 by the CLEO collaboration, the first
results gave R = 0.65±0.40, and the bound on γ presented
in [1] led to great excitement in the B-physics community.
In the case of Rn, we now face a similarly exciting possi-
bility, which we will discuss in more detail in this paper.
However, in comparison with the original bound derived
in [1], the neutral strategy has certain theoretical advan-
tages, connected mainly with the impact of rescattering
processes [5]–[7] and electroweak penguin topologies.

If one of the ratios R(c,n) specified in (1)–(3) is found
to be larger than one, additional experimental information
is required to constrain γ. To this end, we have then to
fix – sloppily speaking – certain ratios of “tree” to “pen-
guin” amplitudes. Such an input allows us also to obtain
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stronger constraints on γ in the case of R(c,n) < 1. The
least fortunate case for the bounds on γ would be R(c,n)
close to 1. If CP-violating asymmetries in the channels ap-
pearing in the numerators in (1)–(3) can be measured, it is
possible to go beyond the bounds on γ and to determine
this angle, also in the case of R(c,n) = 1. A first analy-
sis of such CP asymmetries has recently been performed
by the CLEO collaboration [8], where all results are un-
fortunately still consistent with zero. It is also possible
to obtain theoretical upper bounds on such CP asymme-
tries. For instance, the ratio of the measured CP-averaged
Bd → π+π− and Bd → π∓K± branching ratios implies
|Adir

CP(Bd → π∓K±)| ∼< 0.3 [9].
It is an interesting feature of the bounds on γ that

they prefer values in the second quadrant, which would
be in conflict with the standard analysis of the unitarity
triangle [10]. Other arguments for cos γ < 0 using B →
PP , PV and V V decays were recently given in [12] (see
also [9]). We would like to point out that, in addition
to the bounds on γ, one may also derive constraints on
CP-conserving strong phases δn and δc from the neutral
and charged B → πK decays, respectively. Whereas the
present CLEO data favour a positive value of cos δc, as
is expected in the factorization approximation, they point
towards a negative value of cos δn. However, on the basis
of simple dynamical considerations, one would expect that
δn and δc do not differ dramatically from each other. The
present data do of course not allow us to draw any definite
conclusions. However, if the future data should confirm
this interesting “puzzle”, it may be an indication for new-
physics contributions to the electroweak penguin sector, or
a manifestation of large non-factorizable SU(3)-breaking
effects.

The outline of this paper is as follows: in Sect. 2, we
repeat briefly the general formalism developed in [3]. The
bounds on γ are discussed in view of the recent CLEO data
in Sect. 3, where we also have a brief look at constraints
in the �–η plane of the Wolfenstein parameters [13], gen-
eralized as in [14]. In Sect. 4, we turn to the constraints
on the strong phases δn and δc. Finally, a few concluding
remarks are given in Sect. 5.

2 General formalism

The starting point of our description of the neutral B →
πK system is the following isospin relation:

√
2A(B0

d → π0K0) + A(B0
d → π−K+)

= − [(T + C) + Pew] ≡ 3A3/2, (4)

where the combination (T + C) originates from colour-
allowed and colour-suppressed b̄ → ūus̄ tree-diagram-like
topologies, Pew is due to electroweak penguin constribu-
tions, and A3/2 reminds us that there is only an I = 3/2
isospin component present in (4). Within the Standard
Model, these amplitudes can be parametrized as follows:

T + C = |T + C| eiδT+C eiγ , Pew = − |Pew|eiδew , (5)

where δT+C and δew denote CP-conserving strong phases.
For the following considerations, we have to parametrize
the B0

d → π0K0 decay amplitude in an appropriate way.
If we make use of the unitarity of the CKM matrix and
employ the Wolfenstein parametrization [13], generalized
to include non-leading terms in λ ≡ |Vus| = 0.22 [14], we
obtain

√
2A(B0

d → π0K0) ≡ Pn

= −
(
1− λ2

2

)
λ2A

[
1 + ρn eiθneiγ

]Pn
tc , (6)

where ρn eiθn takes the form

ρn eiθn =
λ2Rb

1− λ2

[
1−

(Pn
uc − C
Pn

tc

)]
. (7)

Here Pn
tc ≡ |Pn

tc| eiδn
tc and Pn

uc correspond to differences
of penguin topologies with internal top and charm and
up and charm quarks, respectively. The amplitude C is
due to insertions of current–current operators into colour-
suppressed tree-diagram-like topologies, and

A ≡ 1
λ2 |Vcb| = 0.81± 0.06,

Rb ≡ 1
λ

(
1− λ2

2

) ∣∣∣∣Vub

Vcb

∣∣∣∣ =
√

�2 + η2 = 0.41± 0.07 (8)

are the usual CKM factors. In order to parametrize the
observable Rn defined in (3), it is useful to introduce the
following quantities:

rn ≡ |T + C|√〈|Pn|2〉 , δn ≡ δT+C − δn
tc , (9)

where
〈|Pn|2〉 ≡ 1

2
(|Pn|2 + |Pn|2) (10)

is the CP-average of the B0
d → π0K0 decay amplitude

specified in (6). Then we obtain [3,15]:

Rn = 1− 2 rn

un
(hn cos δn + kn sin δn) + v2r2

n, (11)

where

hn = cos γ + ρn cos θn

−q [ cosω + ρn cos(θn − ω) cos γ ] (12)
kn = ρn sin θn + q [ sinω − ρn sin(θn − ω) cos γ ] , (13)

and

un =
√
1 + 2 ρn cos θn cos γ + ρ2

n (14)

v =
√
1− 2 q cosω cos γ + q2 . (15)

Moreover, we have introduced the electroweak penguin pa-
rameter

q eiω ≡
∣∣∣∣ Pew

T + C

∣∣∣∣ ei(δew−δT+C), (16)
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which can be fixed theoretically [2] (see also [16]). This
interesting observation was made by Neubert and Ros-
ner in the context of the charged B → πK system. How-
ever, as (4) is also satisfied by the corresponding charged
combination, the same feature can be used in the neutral
strategy as well [3]. To this end, two electroweak penguin
operators with tiny Wilson coefficients are neglected, as
well as electroweak penguins with internal up and charm
quarks. Furthermore, appropriate Fierz transformations
of the remaining electroweak penguin operators are per-
formed, and the SU(3) flavour symmetry of strong interac-
tions is applied. Finally, one arrives at the following result
[2]:

q eiω = 0.63×
[
0.41
Rb

]
, (17)

where also factorizable SU(3)-breaking corrections have
been taken into account. The amplitude T + C, i.e. the
parameter rn, can be determined with the help of the de-
cay B+ → π+π0 by using the SU(3) flavour symmetry of
strong interactions [17]:

T + C = −
√
2
Vus

Vud

fK

fπ
A(B+ → π+π0). (18)

Here the ratio fK/fπ = 1.2 of the kaon and pion decay
constants takes into account factorizable SU(3)-breaking
corrections. Electroweak penguin corrections to this ex-
pression can be taken into account theoretically [3,18],
but play a minor role in this case. The CLEO collabora-
tion sees already some indication for B± → π±π0 modes
[4], with a CP-averaged branching ratio of

BR(B± → π±π0) =
(
5.6+2.6

−2.3 ± 1.7
) × 10−6. (19)

However, the statistical significance of the signal yield is
not yet sufficient to claim an observation of this chan-
nel. Using nevertheless (19), and taking into account the
measured CP-averaged Bd → π0K branching ratio, the
combination of (9) and (18) yields

rn = 0.17± 0.06 , (20)

where we have added the experimental errors in quadra-
ture.

The bounds on γ implied by Rn are related to extremal
values of this observable. If we keep rn and δn as free
parameters, we obtain the following minimal value for Rn
[15]:

Rmin
n

∣∣
rn,δn

=[
1+2 q ρn cos(θn+ω)+q2ρ2

n
(1−2 q cos ω cos γ+q2)(1+2 ρn cos θn cos γ+ρ2

n)

]
sin2 γ . (21)

On the other hand, if only the strong phase δn is kept
as an unknown quantity, Rn takes minimal and maximal
values, which are given by [3]

Rext
n

∣∣
δn
= 1 ± 2

rn

un

√
h2

n + k2
n + v2r2

n. (22)

Expressions (21) and (22) are the main equations of our
paper. The parameter ρn is usually expected at the level

of a few percent [19], and governs also direct CP violation
in Bd → π0K; model calculations of the corresponding
CP asymmetry give results within the range [0.4%, 5%]
[20]. However, it should be kept in mind that ρn may be
enhanced by final-state-interaction processes [5]. These is-
sues will be discussed in more detail in the following sec-
tion.

The formulae given above apply also to the charged
B → πK system, if we perform the following replace-
ments:

rn → rc ≡ |T + C|√
〈|P |2〉

, ρn eiθn → ρ eiθ,

δn → δc ≡ δT+C − δc
tc, (23)

where

P ≡ A(B+ → π+K0)

= −
(
1− λ2

2

)
λ2A

[
1 + ρ eiθeiγ

] |Pc
tc| eiδc

tc , (24)

with

ρ eiθ =
λ2Rb

1− λ2

[
1−

(Pc
uc +A
Pc

tc

)]
. (25)

Here the amplitude A is due to annihilation topologies.
Using (18), (19) and the measured CP-averaged B± →
π±K branching ratio, we obtain

rc = 0.21± 0.06, (26)

where we have again added the experimental errors in
quadrature.

The parameter ρ is a measure of the importance of
certain rescattering effects [5]–[7], and can be probed by
comparing B± → π±K with its U -spin counterpart B± →
K±K [6,7,15]. To this end, we consider the following quan-
tity

K ≡
[

1
εR2

SU(3)

] [
BR(B± → π±K)
BR(B± → K±K)

]

=
1 + 2 ρ cos θ cos γ + ρ2

ε2 − 2 ε ρ cos θ cos γ + ρ2 , (27)

where ε ≡ λ2/(1− λ2), and

RSU(3) =
FBπ(M2

K ; 0
+)

FBK(M2
K ; 0+)

(28)

describes factorizable U -spin-breaking corrections. If we
use the model of Bauer, Stech and Wirbel [21] to estimate
the relevant form factors, we obtain RSU(3) = O(0.7). The
expression on the right-hand side of (27) implies the fol-
lowing allowed range for ρ (for a detailed discussion, see
[9] and [22]):

1− ε
√
K

1 +
√
K

≤ ρ ≤ 1 + ε
√
K

|1− √
K| . (29)
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Fig. 1. The dependence of the extremal values of Rn (neutral
B → πK system) described by (21) and (22) on the CKM
angle γ for qeiω = 0.63 and ρn = 0
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Fig. 2. The dependence of the extremal values of Rc (charged
B → πK system) corresponding to (21) and (22) on the CKM
angle γ for qeiω = 0.63 and ρ = 0

The present CLEO data give BR(B± → K±K)/BR(B±
→ π±K) < 0.3 at 90% C.L. [4]. Consequently, using (29),
this upper bound implies ρ < 0.15 for RSU(3) = 0.7, and
is not in favour of dramatic rescattering effects, although
the upper bound is still one order of magnitude above the
usual model calculations, making use of arguments based
on factorization.

Let us finally note that the formalism discussed in
this section can also be applied to the “mixed” Bd →
π∓K±, B± → π±K system. To this end, we have just to
make appropriate replacements of variables, involving cer-
tain amplitudes T and PC

ew, which measure colour-allowed
tree-diagram-like and colour-suppressed electroweak pen-

guin topologies, respectively. In order to fix T , arguments
based on the factorization hypothesis have to be employed,
and usually it is assumed that the colour-suppressed elec-
troweak penguin amplitude PC

ew plays a very minor role.
However, in contrast to (5), these quantities may be af-
fected by rescattering processes. An interesting approach,
making use of a heavy-quark expansion for non-leptonic B
decays, was recently proposed in [23], which could help to
reduce the uncertainties related to T and PC

ew. It should
also be useful to reduce the theoretical uncertainties of
rn, rc and q eiω, which are due to non-factorizable SU(3)-
breaking corrections. Moreover, this approach allows also
a calculation of the parameters ρn eiθn and ρ eiθ. We will
not consider the Bd → π∓K±, B± → π±K system fur-
ther in this paper, and refer the reader to [3,15], where
detailed discussions can be found. Recently, also the util-
ity of Bs → πK decays in this context was pointed out
[24].

3 Bounds on γ and constraints
in the �–η plane

The bounds on the CKM angle γ implied by the CP-
averaged branching ratios of the neutral B → πK de-
cays are related to the extremal values of Rn given in (21)
and (22). In Fig. 1, we show their dependence on γ for
qeiω = 0.63 and ρn = 0.1 Here all values of Rn below
the Rmin curve are excluded. If rn is fixed, for example to
be equal to 0.17, all values of Rn outside the shaded re-
gion are excluded, which is enlarged (reduced) for larger
(smaller) values of rn. Figure 1 allows us to read off imme-
diately the allowed range for γ corresponding to a given
value of Rn. Let us consider, for example, the central value
of (3), Rn = 0.6. In this case, the Rmin curve implies the
allowed range 0◦ ≤ γ ≤ 21◦ ∨ 100◦ ≤ γ ≤ 180◦. If we use
additional information on the parameter rn, we may put
even stronger constraints on γ. For rn = 0.17, we obtain,
for instance, the allowed range 138◦ ≤ γ ≤ 180◦.

In the case of the charged B → πK system, bounds
on γ can be obtained in an analogous manner. The corre-
sponding curves for the extremal values of Rc are shown in
Fig. 2. There is some kind of complementarity between the
neutral and charged B → πK systems, since the CLEO
data favour Rn < 1 and Rc > 1. Consequently, we have to
fix rc in order to constrain γ through the charged B → πK
decays. For the central values of (2) and (26), Rc = 1.3
and rc = 0.21, we obtain 87◦ ≤ γ ≤ 180◦.

The allowed ranges for γ arising in the examples given
above would be of particular phenomenological interest,
as they would be complementary to the range of γ arising
from the usual indirect fits of the unitarity triangle [10].
The most recent analysis [11] gives

38◦ ≤ γ ≤ 81◦. (30)

1 In Fig. 1, we have assumed 0◦ ≤ γ ≤ 180◦, as implied by
the measured CP-violating parameter εK of the neutral kaon
system.



A.J. Buras, R. Fleischer: Constraints on the CKM angle γ and strong phases from B → πK decays 101

In our examples of the bounds from the neutral B → πK
system, there would be no overlap between these ranges,
which could be interpreted as a manifestation of new
physics [25,26]. In particular, the second quadrant for γ is
favoured; other arguments for cos γ < 0 using B → PP ,
PV and V V decays were recently given in [12] (see also
[9]). However, the present data do not yet allow us to
draw any definite conclusions. Before we can speculate on
physics beyond the Standard Model, it is of course cru-
cial to explore hadronic uncertainties. For the formalism
used in this paper, this was done in [3]; within a different
framework, similar considerations were also made for the
charged and “mixed” B → πK systems in [27].

The theoretical accuracy of the bounds on γ discussed
in this section is limited both by non-factorizable SU(3)-
breaking corrections and by rescattering processes. The
former may affect the determination of the parameters
qeiω and rn,c, whereas the latter may lead to sizeable val-
ues of ρn and ρ. In order to control the non-factorizable
SU(3)-breaking corrections, the “QCD factorization” ap-
proach presented in [23] appears to be very promising.

In the case of the neutral strategy, the parameter ρne
iθn

can be probed – and even taken into account in the bounds
on γ in an exactmanner – through CP-violating effects. To
this end, we consider the Bd → π0K modes and require
that the kaon be observed as a KS. The resulting final
state is then an eigenstate of the CP operator with eigen-
value −1, and we obtain the following time-dependent CP
asymmetry [3]:

aCP(Bd(t) → π0KS)

≡ BR(B0
d(t) → π0KS) − BR(B0

d(t) → π0KS)

BR(B0
d(t) → π0KS) + BR(B0

d(t) → π0KS)

= Adir
CP(Bd → π0KS) cos(∆Md t)

+Amix
CP (Bd → π0KS) sin(∆Md t) , (31)

where Adir
CP(Bd → π0KS) and Amix

CP (Bd → π0KS) are due
to “direct” and “mixing-induced” CP violation, respec-
tively. Using (6), these observables take the following form:

Adir
CP(Bd → π0KS) = − 2 ρn sin θn sin γ

1 + 2 ρn cos θn cos γ + ρ2
n

(32)

Amix
CP (Bd → π0KS) = (33)

−
[
sin

(
φ
(d)
M +φK

)
+2 ρn cos θn sin

(
φ
(d)
M +φK+γ

)
+ρ2

n sin
(

φ
(d)
M +φK+2 γ

)
1+2 ρn cos θn cos γ+ρ2

n

]
.

The latter expression reduces to

Amix
CP (Bd → π0KS) = − sin

(
φ

(d)
M + φK

)
= Amix

CP (Bd → J/ψKS) (34)

in the case of ρn = 0 [16]. Clearly, a violation of (34) and
a sizeable value of the direct CP asymmetry (32) would
signal that the parameter ρn cannot be neglected. Such
a feature may either be due to large rescattering effects,
or to new-physics contributions. The whole pattern of all
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Fig. 3. The constraints in the �–η plane implied by (21) for
Rn = 0.6, qeiω = 0.63× [0.41/Rb], and ρn = 0. The shaded re-
gion is the allowed range for the apex of the unitarity triangle,
whereas the “crossed” region is excluded through Rmin

n |rn,δn

(see Fig. 1)

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
ρ.bar

0

0.1

0.2

0.3

0.4

0.5
η.

ba
r

Rb=0.41

Fig. 4. The constraints in the �–η plane implied by (22) for
Rn = 0.6, rn = 0.17, qeiω = 0.63 × [0.41/Rb], and ρn = 0.
The shaded region is the allowed range for the apex of the
unitarity triangle, whereas the “crossed” region is excluded
through Rext

n |δn (see Fig. 1)

experimentally observed B → πK and B → KK decays
may allow us to distinguish between these cases.

In the mixing-induced CP asymmetry (34), φ
(d)
M =

2arg(V ∗
tdVtb) is related to the weak B0

d–B
0
d mixing phase,

whereas φK is related to K0–K0 mixing, and is negligi-
bly small in the Standard Model. The combination φd =
φ

(d)
M +φK is equal to 2β in the Standard Model, and can be
determined “straightforwardly” through the “gold-plated”
mode Bd → J/ψKS at the B-factories. Strictly speaking,
a measurement of Amix

CP (Bd → J/ψKS) allows us to deter-
mine only sinφd, i.e. to fix φd up to a twofold ambiguity.
Several strategies were proposed in the literature to re-
solve this ambiguity [28].

If we assume that φd has been fixed this way, the ob-
servables (32) and (33) allow us to determine ρn and θn as
a function of γ. The general formulae given in the previous
section allow us then to take into account these parameters
in the curves shown in Fig. 1. The usual model calcula-
tions for non-leptonic B decays give values for ρn at the
level of a few percent. In order to illustrate the impact on
the bounds on γ, let us take ρn = 0.05 and θn ∈ {0◦, 180◦}.
For the example given above, we obtain then the allowed
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ranges 0◦ ≤ γ ≤ (21◦ ± 1◦) ∨ (100◦ ± 4◦) ≤ γ ≤ 180◦,
and (138◦ ± 2◦) ≤ γ ≤ 180◦. The feature that the un-
certainty due to ρn is larger in the case of Rmin

n can be
understood easily by performing an expansion of (21) and
(22) in powers of ρn, and neglecting second-order terms of
O(ρ2

n), O(rn ρn) and O(r2
n):

Rmin
n

∣∣L.O.

rn,δn
=

[
1 + 2 ρn cos θn (q − cos γ)

1− 2 q cos γ + q2

]
sin2 γ (35)

Rext
n

∣∣L.O.

δn
= 1 ± 2 rn |cos γ − q| . (36)

Here we have moreover made use of (17), which gives ω =
0. Interestingly, as was noted for the charged B → πK
system in [2], there are no terms of O(ρn) present in (36),
in contrast to (35). Consequently, the bounds on γ related
to (21) are affected more strongly by ρn then those implied
by (22). In the case of the charged strategy, we have to
use the U -spin flavour symmery, relating B± → π±K to
B± → K±K, in order to take into account the parameters
ρ and θ in the curves shown in Fig. 2 [3,15]. To this end,
the observable K introduced in (27) has to be combined
with the direct CP asymmetries in B± → π±K or B± →
K±K modes.

In addition to the theoretical uncertainties associated
with SU(3)-breaking and rescattering effects, another un-
certainty of the constraints on γ is due to the CKM factor
Rb in expression (17) for the electroweak penguin parame-
ter qeiω. Because of this feature, it is actually more appro-
priate to consider constraints in the �–η plane. A similar
“trick” was also employed for Bd → π+π− decays in [29],
and recently for the charged B → πK system in [30].

The constraints in the �–η plane can be obtained
straightforwardly from (21) and (22). In the former case,
we obtain

cos γ = Rnq ±
√
(1− Rn) (1− Rnq2), (37)

whereas we have in the latter case

cos γ =
1− Rn ± 2 q rn +

(
1 + q2

)
r2
n

2 rn (q rn ± 1)
. (38)

In these expressions, we have assumed, for simpliciy, ρn =
0 and ω = 0. For the charged B → πK system, we obtain
analogous expressions. The right-hand sides of these for-
mulae depend implicitly on the CKM factor Rb through
the electroweak penguin parameter qeiω, which is given
by (17). Consequently, it is actually more appropriate to
consider contours in the �–η plane instead of the CKM
angle γ. They can be obtained with the help of (37) and
(38) by taking into account [14]

� = Rb cos γ, η = Rb sin γ, (39)

and are illustrated in Figs. 3 and 4 for the examples given
in the previous section.
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Fig. 5. The dependence of cos δn on γ for various values of Rn

in the case of qeiω = 0.63 and rn = 0.17. Rescattering effects
are neglected, i.e. ρn = 0
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Fig. 6. The dependence of cos δc on γ for various values of Rc

in the case of qeiω = 0.63 and rc = 0.21. Rescattering effects
are neglected, i.e. ρ = 0

4 Bounds on strong phases

If we use the general expression (11) for Rn, we can de-
termine cos δn as a function of γ:

cos δn =
1

h2
n + k2

n


(
1− Rn + v2r2

n
)
unhn

2 rn

±kn

√
h2

n + k2
n −

[
(1− Rn + v2r2

n)un

2 rn

]2

. (40)

In Fig. 5, we show the dependence of cos δn for various
values of Rn in the case of qeiω = 0.63 and rn = 0.17.
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Fig. 7. The dependence of cos δc and cos δn on γ for Rc = 1.3,
rc = 0.21, Rn = 0.6, rn = 0.17, qeiω = 0.63 in the presence of
large rescattering effects (thin lines), corresponding to ρeiθ =
ρneiθn = 0.1 × exp(i 90◦)
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Fig. 8. The dependence of cos δc and cos δn on γ for Rc = 1.3,
rc = 0.21, Rn = 0.6, rn = 0.17, ρ = ρn = 0 for a modified elec-
troweak penguin parameter, given by qeiω = 1.26 × exp(i 45◦)

From this figure, also the allowed range for γ can be read
off for a given value of Rn. For the central value Rn =
0.6 of the present CLEO data, we obtain moreover −1 ≤
cos δn ≤ −0.86. Performing the replacements given in (23),
(40) applies also to the charged B → πK system. The
corresponding contours in the γ–cos δc plane are shown in
Fig. 6. For Rc = 1.3, we obtain +0.27 ≤ cos δc ≤ +1.

As can be seen in (9) and (23), we have δn − δc =
δc
tc −δn

tc, where δ
c
tc and δn

tc denote the strong phases of the
amplitudes Pc

tc and Pn
tc, which describe the differences of

penguin topologies with internal top- and charm-quark
exchanges of the decays B+ → π+K0 and B0

d → π0K0,

respectively. These penguin topologies consist of QCD and
electroweak penguins, where the latter contribute toB+ →
π+K0 only in colour-suppressed form. In contrast, B0

d →
π0K0 receives contributions both from colour-allowed and
from colour-suppressed electroweak penguins. Neverthe-
less, they are expected to be at most of O(20%) of the
B0

d → π0K0 QCD penguin amplitude. If we neglect the
electroweak penguins and make use of isospin flavour-
symmetry arguments, we obtain Pn

tc ≈ Pc
tc, yielding δn ≈

δc and cos δn ≈ cos δc. Employing moreover “factoriza-
tion”, these cosines are expected to be close to +1.

Consequently, as the present CLEO data are in favour
of cos δn < 0 and cos δc > 0, we arrive at a “puzzling” sit-
uation, although it is of course too early to draw definite
conclusions. If future data should confirm this “discrep-
ancy”, it may be an indication for new-physics contribu-
tions to the electroweak penguin sector, or a manifestation
of large non-factorizable SU(3)-breaking effects. Since the
parameter ρn enters in expression (11) for Rn in the term
proportional to rn, it can be regarded as a second-order
effect and does not play a dramatic role for the contraints
on cos δn(c) and γ. This feature is illustrated in Fig. 7 for
the central values of the present CLEO data.

In Fig. 8, we consider the impact of a modified elec-
troweak penguin parameter, qeiω = 1.26 × exp(i 45◦),
which differs significantly from the SU(3) Standard-Model
expression (17). In this case, the discrepancy between
cos δn and cos δc would be essentially resolved, favouring
values of O(−0.5), which would still be in conflict with
the factorization expectation. A value of qeiω = 1.26 ×
exp(i 45◦) may be due to CP-conserving new-physics con-
tributions to the electroweak penguin sector [26]. In gen-
eral, new physics will also lead to CP-violating contribu-
tions, which may lead to sizeable direct CP violation in
Bd → π0KS, and to a violation of (34). Consequently, as
we have already emphasized above, it would be an impor-
tant task to measure the CP-violating observables of this
decay.

If the new-physics contributions are CP-conserving, it
will be hard to distinguish them from large non-factorizable
flavour-symmetry-breaking effects, which may also shift
the parameter qeiω from (17). In Refs. [26,27], it was ar-
gued that these effects are very small, whereas we gave a
more critical picture in [3]. Also the approach proposed
in [23] is in favour of small non-factorizable effects. The
deviation of qeiω = 1.26× exp(i 45◦) used in the example
given in Fig. 8 from (17) would probably be too large to be
explained by SU(3) breaking in a “natural” way. However,
there may be additional sources for flavour-symmetry-
breaking effects. An example is π0–η, η′ mixing, which has
not yet been considered for B → π0K decays. In a recent
paper [31], it was emphasized that isospin violation arising
from such effects could mock new physics in the extrac-
tion of the CKM angle α from B → ππ isospin relations.
It would be interesting to extend these studies also to the
B → πK approaches to probe γ.
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5 Conclusions

As we have pointed out in [3], the neutral B → πK strat-
egy could be useful to constrain – and eventually deter-
mine – γ in an analogous manner as the strategy of Neu-
bert and Rosner [2] using charged B → πK modes. The
most recent CLEO data look very interesting in this re-
spect. As we have illustrated in Figs. 1–4, improved mea-
surements of both the neutral and the charged modes, in
particular taken together, could give a powerful constraint
on γ. There is some indication that the second quadrant
for γ is preferred. This is in contrast to the standard anal-
ysis of the unitarity triangle, which favours the first quad-
rant. Unfortunately, no definite conclusions can be drawn
at present. This “discrepancy” between the B → πK ap-
proaches and the standard analysis of the unitarity tri-
angle could turn out to be more pronounced when the
B-decay data improve and the lower bound on B0

s–B0
s

mixing will be raised, forcing the upper bound on γ from
the standard analysis to be even smaller than presently
known.

We have also pointed out that the CLEO data suggest
bounds on the strong phases δn and δc with cos δn < 0
and cos δc > 0. The substantial deviation of δn from δc
and the negative value of cos δn, if confirmed by improved
data, would either indicate substantial new-physics contri-
butions to the electroweak penguin sector, or large non-
factorizable SU(3)-breaking effects. In order to distinguish
between these possibilties, detailed studies of the various
patterns of new-physics effects in all B → πK decays are
essential, as well as critical analyses of possible sources for
SU(3) breaking. We hope that future studies following the
strategies discussed in this paper will eventually shed light
on the physics beyond the Standard Model.
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014005
21. M. Bauer, B. Stech, M. Wirbel, Z. Phys. C 29 (1985) 637

and C 34 (1987) 103
22. D. Pirjol, Phys. Rev. D 60 (1999) 054020
23. M. Beneke, G. Buchalla, M. Neubert, C.T. Sachrajda,

Phys. Rev. Lett. 83 (1999) 1914
24. M. Gronau, J.L. Rosner, TECHNION-PH-00-25 [hep-

ph/0003119]
25. For recent discussions, see D. Choudhury, B. Dutta, A.

Kundu, Phys. Lett. B 456 (1999) 185; X.-G. He, C.-
L. Hsueh, J.-Q. Shi, Phys. Rev. Lett. 84 (2000) 18;
R. Fleischer, J. Matias, Phys. Rev. D 61 (2000) 074004

26. Y. Grossman, M. Neubert, A.L. Kagan, SLAC-PUB-8243
[hep-ph/9909297]

27. M. Neubert, J. High Energy Phys. 9902 (1999) 014
28. See, for example, Y. Grossman, H.R. Quinn, Phys. Rev. D

56 (1997) 7259; J. Charles, A. Le Yaouanc, L. Oliver,
O. Pène, J.-C. Raynal, Phys. Lett. B 425 (1998) 375;
A.S. Dighe, I. Dunietz, R. Fleischer, Phys. Lett. B 433
(1998) 147; R. Fleischer, Phys. Rev. D 60 (1999) 073008

29. J. Charles, Phys. Rev. D 59 (1999) 054007
30. M. Neubert, CLNS 00/1660 [hep-ph/0001334], to appear

in the Proceedings of the Trieste Summer School in Par-
ticle Physics (Part II), Trieste, Italy, 21 June – 9 July,
1999

31. S. Gardner, Phys. Rev. D 59, 077502 (1999)


